Calculus Review

Brian Longo

September 22, 2015

Here are some practice problems to refresh your calculus I/II skills. I've only added the type of problems that will be relevant to our course. These excercises are not to be turned in, but I expect you to be able to solve them. I am aware that there are a ton of problems here and I don't expect you do them all. The point of this document is just to provide you with some practice material.

Calculus I

Derivatives

Calculate the derivatives of the following functions.

Polynomials

1. $f(x)=3 x^{2}-4 x+1$
2. $f(x)=17 x+24 \sqrt{x}$
3. $f(x)=x^{2}+\frac{1}{2 x}$
4. $f(x)=\sqrt{x}(x+1)$
5. $f(x)=-2 x^{-2}+3 \sqrt{x}$
6. $f(x)=3 x^{2}+\frac{12}{\sqrt{t}}-\frac{1}{t^{2}}$

Exponentials and Trigonometric

1. $f(x)=e^{x}+x^{2}$
2. $f(x)=\frac{3^{x}}{3}+\frac{33}{\sqrt{x}}$
3. $f(x)=e^{\pi}+e^{x}$
4. $f(x)=\cos (x)+2 x$
5. $f(x)=\sin (x)+3 e^{x}$
6. $f(x)=\tan (x)+\sqrt{3 x}$
7. $f(x)=\tan ^{-1}(x)$

Product and Quotient Rule

1. $f(x)=x e^{x}$
2. $f(x)=\cos (9) x \sin (x)$
3. $f(x)=\left(x^{2}+3\right) e^{x}$
4. $f(x)=\left(2-x-3 x^{2}\right)\left(e^{x}-4 \sqrt{x}\right)$
5. $f(x)=2 x e^{x}-\frac{1}{\sqrt{x}}$
6. $f(x)=\cos (x) \sin (x) x^{2}$
7. $f(x)=\frac{25 x^{2}}{e^{x}}$
8. $f(x)=\frac{t+1}{t^{2}}$
9. $f(x)=\frac{3 x+1}{5 x+1}$
10. $f(x)=\tan (x)$ (Try to use the quotient rule rather than just stating the formula you all know and love)
11. $f(x)=\frac{4}{\sqrt{x}}$

Chain rule

1. $f(x)=(x+1)^{2015}$
2. $f(x)=\sqrt{1+x^{2}}$
3. $f(x)=e^{4 x+1}$
4. $f(x)=\cos \left(3 x^{2}\right)$
5. $f(x)=100 e^{-x^{2}}$
6. $f(x)=\frac{1}{\left(e^{x}+1\right)^{2}}$
7. $f(x)=\left(\frac{\left(x^{2}+2\right)}{3}\right)^{2}$
8. $f(x)=x e^{x^{2}}$

Optimization

In this section f will always be a differentiable function.

1. What does it mean if $f^{\prime}(a)=0$ for some real number a ?
2. What does it mean if $f^{\prime}(a)>0$ for some real number a ?
3. What does it mean if $f^{\prime}(a)<0$ for some real number a ?
4. What does it mean if $f^{\prime \prime}(a)=0$ for some real number a ?
5. What does it mean if $f^{\prime \prime}(a)>0$ for some real number a ?
6. What does it mean if $f^{\prime \prime}(a)<0$ for some real number a ?
7. What is the difference between a local \min / \max and a global \min / \max ?
8. True or False. If $f^{\prime}(a)=0$, then f has a local extreme value at a.
9. True or False. If f has a local extreme value at a point a, then $f(a)=0$. Does your answer change if f is not differentiable at a ?
10. Find the critical points and inflection points of the following functions:
(a) $f(x)=x^{3}-9 x^{2}+24 x+5$
(b) $f(x)=5 x-3 \ln (x)$
(c) $f(x)=4 x e^{3 x}$
(d) $f(x)=\left(x^{2}-4\right)^{7}$
(e) $f(x)=x^{5}+15 x^{4}+25$
11. Use the $2 n d$ derivative test to determine the nature of the critical points you found in the previous problem. I.e. determine if they are local mins/maxs or inflection points.
12. (IMPORTANT) Find the absolute extreme values for the following functions subject to the contraints
(a) $f(x)=x^{3}-3 x^{2}+20,-1 \leq x \leq 3$
(b) $f(x)=x^{4}-8 x^{2},-3 \leq x \leq 1$
(c) $f(x)=\frac{x+1}{x^{2}+3},-1 \leq x \leq 2$

Calculus II

1. $\int x e^{x^{2}} d x$
2. $\int x e^{x} d x$
3. $\int \ln (x) d x$ (Hint: Integration by parts!)
4. $\int x \sqrt{x^{2}+1}$
5. $\int x \sqrt{x+1} d x$

Misc.

Be able to (roughly) graph the following functions

1. $f(x)=(x+2)^{2}$
2. $f(x)=\ln (x)$
3. $f(x)=e^{x}$
4. $f(x)=x$.
5. $f(x)=\cos (x)$
6. $f(x)=\sin (x)$
7. $f(x)=1 / x$
8. $f(x)=|x|$
9. $f(x)=\tan ^{-1}(x)$
10. $f(x)=x^{3}-1$
